Лабораторная работа. Цензурирование данных.

Задание. При многократном измерении одной и той же величины Q получена серия из 24 результатов измерений Q_i ; $i \in (1,...,24)$. Исключить аномальные значения из результатов измерений. <u>Исходные данные:</u>

Таблица 1

№	Q_i	$N_{\overline{0}}$	Q_i	$N_{\overline{0}}$	Q_i	$N_{\underline{0}}$	Qi
измерения		измерения		измерения		измерения	
1	482	7	483	13	483	19	483
2	485	8	483	14	483	20	482
3	486	9	481	15	483	21	481
4	486	10	480	16	483	22	481
5	483	11	492	17	484	23	483
6	483	12	486	18	484	24	495

 $P\,e\,w\,e\,u\,e\,.\,\,1).$ Определяем оценки результата измерения $\overline{Q}\,$ и среднего квадратического отклонения S_{Q} по формулам:

$$\overline{Q} = \sum_{i=1}^{24} \frac{Q_i}{24} = 483,9583,$$

$$S_Q = \sqrt{\sum_{i=1}^{24} \frac{(Q_i - \overline{Q})^2}{24}} = 3,2848,$$

и проверяем с помощью Microsoft Excel следующим образом: на листе Excel записываем столбцы 1 и 2 таблицы 1:

Таблица 2

№	Q_i	$Q_i - \overline{Q}$	$(Q_i - \overline{Q})^2$
1	482	-1,9583	3,8351
2	485	1,0417	1,0851
3	486	2,0417	4,1684
4	486	2,0417	4,1684
5	483	-0,9583	0,9184
6	483	-0,9583	0,9184
7	483	-0,9583	0,9184
8	483	-0,9583	0,9184
9	481	-2,9583	8,7517
10	480	-3,9583	15,6684
11	492	8,0417	64,6684
12	486	2,0417	4,1684

13	483	-0,9583	0,9184
14	483	-0,9583	0,9184
15	483	-0,9583	0,9184
16	483	-0,9583	0,9184
17	484	0,0417	0,0017
18	484	0,0417	0,0017
19	483	-0,9583	0,9184
20	482	-1,9583	3,8351
21	481	-2,9583	8,7517
22	481	-2,9583	8,7517
23	483	-0,9583	0,9184
24	495	11,0417	121,9184
\overline{Q}	483,9583		
			258,9582
Σ			

- a). Выделяем ячейку для искомого значения \overline{Q} (щелчком по левой кнопке), выбираем значок f_x на панели инструментов, затем находим функцию Статистические СРЗНАЧ в окне ниспадающего меню, нажимаем OK, в поле Число1 заносим столбец значений x с помощью мыши, нажимаем OK.
- b). Для удобства вычисления среднего квадратического отклонения результата измерения S_Q добавим в таблицу столбцы 3 и 4. Для этого выделяем ячейку в строке рядом со значением Q_I , в выделенной ячейке ставим знак " = ", щелкаем мышью по ячейке, содержащей значение Q_I , знак « », щелкаем по ячейке, содержащей \overline{Q} , Enter. В строке формул выделяем знаком «\$» букву номера ячейки, содержащей \overline{Q} , и протягивая мышью до последней строки, заполняем остальные ячейки третьего столбца.

Четвертый столбец заполняется по той же схеме: в выбранной ячейке ставим знак " = ", щелкаем мышью по ячейке, содержащей значение Q_1 - \overline{Q} , знак « * », щелкаем по ячейке, содержащей Q_1 - \overline{Q} , Enter. Протягивая мышью до последней строки, заполняем остальные ячейки четвертого столбца.

c). Суммируем все значения $(Qi - \overline{Q})^2$ – содержимое ячеек четвертого столбца, используя значок \sum (автосумма) на панели инструментов. Результат делим на 24 и используя значок f_x на панели инструментов, находим функцию Математические – КОРЕНЬ, получаем:

$$S_Q = \sqrt{\sum_{i=1}^{24} \frac{(Q_i - \overline{Q})^2}{24}} = \sqrt{\frac{258,9583}{24}} = \sqrt{10,7899} \approx 3,2848$$

- 2. Чтобы обнаружить и исключить ошибки результатов измерений:
 - вычисляем наибольшее по абсолютному значению нормированное отклонение

$$v = \frac{\max \left| Q_i - \overline{Q} \right|}{S_O}$$

$$v = \frac{11,0417}{3.2848} \approx 3,3614$$

— задаемся доверительной вероятностью P=0.95 и из соответствующих таблиц с учетом q=1-P находим соответствующее ей теоретическое (табличное) значение V_q :

$$q = 1 - P = 1 - 0.95 = 0.05$$

 $v_q = 2.701$ при $n = 24$;

— сравниваем ν и ν_q : $\nu > \nu_q$. Это означает, что результат измерения Q_{24} является ошибочным, он должен быть отброшен.

Необходимо повторить вычисления согласно п.п. 1 и 2 для сокращенной серии результатов измерений и проводить их до тех пор, пока не будет выполняться условие $v < v_q$ для всех результатов измерений.

Повторяем вычисления, отбросив измерение №24. Получим согласно таблице 3:

$$\overline{Q} = \sum_{i=1}^{23} \frac{Q_i}{23} = 483,4783$$

$$S_Q = \sqrt{\sum_{i=1}^{23} \frac{(Q_i - \overline{Q})^2}{23}} = \sqrt{\frac{131,7391}{23}} = \sqrt{5,7278} \approx 2,3933$$

Таблица 3

No	Q_i	$Q_i - \overline{Q}$	$(Q_i - \overline{Q})^2$
измерения			
1	482	-1,4783	2,1853
2	485	1,5217	2,3157
3	486	2,5217	6,3592
4	486	2,5217	6,3592
5	483	-0,4783	0,2287
6	483	-0,4783	0,2287
7	483	-0,4783	0,2287
8	483	-0,4783	0,2287
9	481	-2,4783	6,1418
10	480	-3,4783	12,0983
11	492	8,5217	72,6200

12	486	2,5217	6,3592
13	483	-0,4783	0,2287
14	483	-0,4783	0,2287
15	483	-0,4783	0,2287
16	483	-0,4783	0,2287
17	484	0,5217	0,2722
18	484	0,5217	0,2722
19	483	-0,4783	0,2287
20	482	-1,4783	2,1853
21	481	-2,4783	6,1418
22	481	-2,4783	6,1418
23	483	-0,4783	0,2287
Σ		0	131,7391

Имеем:

$$v = \frac{8,5217}{2,3933} \approx 3,5607$$

$$v_q = 2,683$$
 при $n = 23;$

Сравниваем ν и ν_q : $\nu > \nu_q$. Отбрасываем измерение №11 и повторяем вычисления. Для n = 22 аналогично получим:

$$\overline{Q} = \sum_{i=1}^{22} \frac{Q_i}{22} = 483,0909 \,, \qquad \qquad S_Q = \sqrt{\sum_{i=1}^{22} \frac{\left(Q_i - \overline{Q}\right)^2}{22}} = \sqrt{\frac{55,8182}{22}} = \sqrt{2,5372} \approx 1,5929 \,,$$

$$\nu = \frac{3,0909}{1,5929} \approx 1,9405 \,, \qquad \qquad \nu_q = 2,664 \,\,\text{при } n = 22;$$

Сравниваем ν и ν_q . Так как $\nu < \nu_q$, то результат измерения №10 не является ошибочным. Следовательно, окончательно остается 22 измерения, т.е. n=22.